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Creative fixation is a common side effect when designers seek inspiration from success-

ful designs, often limiting the originality of subsequent work. This paper introduces

AI intermediation, a novel approach that leverages generative models to overcome this

challenge. Our approach creates variations of leading designs that maintain core se-

mantic concepts while differing visually, and provides these variations to the designers

instead of the original exemplars. This allows communicating valuable insights and

inspiring novel interpretations without inducing fixation. We empirically validate the

proposed approach using a field experiment involving professional designers in a logo

design contest. Results show that designers with AI intermediation produce (1) higher-

quality work than those with no exposure to exemplars, and (2) more-original work

than those with direct exposure to exemplars. We further decompose the sources of

creativity and demonstrate that while the generative model yields distinct variations,

human creativity remains pivotal for improving originality and quality of the final de-

signs. Consequently, AI intermediation presents an efficient facilitator to human-driven

creative process.
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1 Introduction

Good Artists Borrow, Great Artists Steal

Pablo Picasso

Learning from successful precedents is a fundamental approach for quality improvement

and innovation across creative domains (Lidwell, 2003; Norman, 2013). Exposure to high-

performing exemplars enables designers and organizations to discern effective strategies, align

with evolving audience expectations, accelerate development by building on proven concepts,

and elevate baseline standards (Carpenter and Nakamoto, 1989; Cooper and Kleinschmidt,

1995; von Hippel, 1986; Zhang et al., 2017). Many impactful innovations are not entirely

novel but rather creative reinterpretations or combinations of existing successful ideas. For

organizations, Aerie built upon the key message of Dove’s Real Beauty campaign, yet forged

a distinct brand identity that resonated well with its target audience (Maheshwari, 2016).

Similarly, for individuals like influencers, Ryan Trahan achieved massive success by studying

MrBeast’s viral content formats and adapting them with unique personal elements (Larner,

2022). These examples illustrate how inspiration drawn from success can be productively

channeled into novel and successful creative outcomes.

However, learning from successful examples carries an inherent risk: creative fixation,

where exposure to specific solutions causes creators to inadvertently anchor on the super-

ficial features of observed exemplars, diminishing the novelty and diversity of subsequent

outputs (Berger and Heath, 2007; White and Argo, 2011). When creative fixation becomes

widespread, the resulting homogenization can inflict significant damage. In the market-

place, it leads to visual saturation and audience fatigue, as initially distinctive concepts,

like Facebook’s Corporate Memphis illustration style, become ubiquitous and lose their ap-

peal (Huang, 2022). Strategically, the visual convergence erodes the competitive advantage

conferred by original designs, as pioneering brands see their unique identities diluted by look-

alikes. This can lead to defensive legal measures, such as Oatly’s lawsuits over packaging
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aesthetics and Apple’s disputes with Samsung regarding “slavish copying” of design (BBC

News, 2021; Reuters, 2011). Beyond these competitive concerns, creative fixation anchors

designers to premature solutions instead of pursuing potentially superior alternatives in the

broader design space, which limits brands’ access to diverse stylistic options required for

differentiation and customer appeal.

The challenge of balancing learning from successful exemplars against the risk of design

fixation often occurs in internal design processes within organizations, but it is particularly

acute in crowdsourcing contests (Burnap et al., 2023; Terwiesch and Xu, 2008; Jiang et al.,

2022; Mihm and Schlapp, 2019). Open contests, which allow participants to view leading

submissions, typically yield higher average submission quality (Wooten and Ulrich, 2017;

Zhang et al., 2019). However, this transparency leads to significant imitation and loss of

originality due to fixation on early successful entries (Erat and Krishnan, 2012; Kornish

and Ulrich, 2011; Hofstetter et al., 2020). In contrast, blind contests, which withhold peer

submissions, tend to foster greater originality and broader exploration but may result in

submissions of lower average quality as learning opportunities are eliminated. This poses

an important question: Can mechanisms be developed to facilitate learning from successful

designs while simultaneously mitigating the detrimental effects of fixation to preserve creative

exploration?

We propose AI intermediation, an approach that disseminates high-quality design ideas

through sharing design variations instead of the original exemplars. We use generative

models to create variations that communicate core concepts from the original design yet

remain visually distinct to mitigate fixation. The shared core concepts in variations allow

designers to learn from the best designs; the visual distinction between variations and original

designs prevents direct replication and encourages creative adaptation. We illustrate the

design variations in Figure 1. The image on the left is the high-quality logo created by a

professional designer (“original logo”), and we show four variations of this logo on the right

side. All variations retain core elements (brand name, leaf and fork motifs) while differing in
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typography, and specific rendering, providing visual distinctness. Designers can refine these

variations or draw inspirations from them.

Figure 1: Illustrative Example of AI Variations

Notes: The original logo (left) for “Juneberry”, featuring leaves and a fork, is transformed by our generative
model into four distinct variations (right). These variations maintain core thematic elements (leaves, fork,
natural and fresh aesthetic) while differing in specific arrangements.

Practical implementation of AI intermediation requires developing a specialized pipeline

capable of generating high-quality variations. For our proof-of-concept application, we de-

velop an approach that combines image-to-text models to textually describe the core elements

of original designs and text-to-image models to create variations. We fine-tune the pretrained

text-to-image generation using a two-stage approach. First, the model learns foundational

logo design principles through reconstructive training. The training involves a curated set

of professionally designed logos from a leading design platform, so that the generated im-

ages resemble professionally-designed logos. In the second fine-tuning step, we guide the

generative model towards the well-performing logos and away from ill-performing ones. We

calibrate the design quality using survey-based measures of click attractiveness collected for

about 100 logos.

The proposed generative model creates visually coherent logo variations that are semanti-

cally similar to the original logo, but visually distinct. We achieve these goals by translating
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original logos into structured textual descriptions and then using the extracted descriptions

to guide image generation. Intuitively, our approach recognizes that language is an imper-

fect tool for communicating visual designs. Textual descriptions are sufficiently precise to

capture the core ideas from the original logo (alignment), but they cannot fully articulate

all visual details (distinctiveness).1

To empirically evaluate the AI intermediation approach, we conduct a field experiment

within a real-world logo design contest. The experiment involves over 200 professional de-

signers recruited on a leading crowdsourcing platform. We randomize designers’ access to

logo exemplars in a creative brief across three treatment arms: Open, where designers view

high-quality logos previously created for the focal brand; Blind, where designers view no

logo exemplars; and Variation, where designers view AI variations of original logos, such as

shown in Figure 1.

We focus on the quality and originality of submissions. Quality is the primary objective

of business creative processes. In logo design contests, quality is often judged by the client

who sponsored the contest. We evaluate quality using survey-based ratings on how well logos

attract clicks in online ads. Originality indicates if designers are exploring novel ideas rather

than converging on the provided exemplars. To evaluate originality, we calculate distance

measures between submitted logos and exemplars from the brief. Our originality scores focus

on the high-quality designs, to separate originality from the quality dimension, and to mimic

the practical setting where clients choose aesthetics after the initial quality screening.

Our findings confirm that AI intermediation successfully transmits valuable information,

leading to performance gains over the no-exposure condition, while spurring greater creative

exploration compared to full exposure. Submissions in the variation condition outperform the

blind condition in quality, and high-quality submissions in the variation condition outperform

the open condition in originality. The overall click attractiveness (quality) of designs from

1When conditioned on identical textual descriptions, diffusion-based image generation yields diverse
visual outputs by using different random seeds for initialization (Rombach et al., 2022; Xu et al., 2024). In
our case, this enables exploration of distinct visual forms for a given original design.
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the variation condition are on par with the open condition, and both are about 10% higher

than the blind condition. The originality of logo designs from the variation condition is

on the same level as the blind condition and substantially higher than the open condition.

For brands, this translates into access to a richer pool of high-quality, diverse solutions,

increasing the likelihood of identifying designs that not only meet objective quality criteria

but also satisfy subjective aesthetic preferences.

To understand the relative contributions to originality of AI variations versus subsequent

human creative effort, we collected and evaluated professional refinements for the AI vari-

ations. The refinements were conducted by the human designers and focused on removing

artifacts of the generative model, with minimal changes to the semantic and stylistic ele-

ments. We demonstrate that designers’ best submissions from the variation condition were

substantially more original than tightly refined AI variations. Human designers in the AI

intermediation approach do not merely refine the variations. Instead, they leverage machine-

generated concepts as springboards for significant creative leaps to achieve novel and distinct

designs.

The remainder of the paper is structured as follows: Section 2 reviews relevant literature

and positions our contribution. Section 3 details the AI model development, including the

pipeline structure, extracting ideas, and fine-tuning procedures. Section 4 describes the

experimental design and empirical findings from the field experiment. Finally, Section 5

summarizes the key insights from our study, explores broader managerial implications beyond

logo design contexts, discusses limitations, and identifies avenues for future research.

2 Related Literature

The advancing capabilities of generative models have attracted growing research into its

potential to augment human creativity. Studies have explored various modes of human-AI

interaction, including generative models as an ideation partner, co-creator, or evaluation
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tool in settings such as story composition, advertisement creation, and artwork creation

(Doshi and Hauser, 2023; Chen and Chan, 2023; Lee and Kim, 2024). Findings show that

iterative human-AI processes can often combine strengths of human and AI to outperform

purely human or purely AI outcomes (Boussioux et al., 2023; Zhou and Lee, 2023). These

approaches generally focus on enhancing the creative output of an individual or a small,

directly collaborating team.

Within marketing, these machine augmentation paradigms are being applied to specific

challenges. Scholars have used machine learning models to map brand attributes to vi-

sual logo characteristics for data-driven ‘moodboarding’, trained models for generating and

screening automotive aesthetic designs, and demonstrated how machine-driven shape mor-

phing can yield more market-attractive forms (Dew et al., 2022; Burnap et al., 2023; Chen

et al., 2023). Similar to the broader machine-augmented creativity literature, these appli-

cations typically involve machines directly assisting a human designer or marketer in their

creative tasks or decision-making processes, or using models to generate content that is then

screened by humans (Jansen et al., 2023).

Our work introduces a novel paradigm using generative models not merely for individual

augmentation or direct co-creation, but as an intermediary to foster collective creativity.

Our proposed AI intermediation operates by abstracting and diffusing the core conceptual

elements of human submissions to other humans, transforming the original ideas into visually

distinct variations. This mechanism aims to facilitate indirect social learning by communicat-

ing successful concepts across participants without triggering direct fixation, which is often

caused by exposure to peer work. Therefore, our proposed approach addresses a different

set of challenges related to the collaborative creative processes.

The theoretical foundation for AI intermediation stems from research on social learning,

suggesting that abstracted exposure can mitigate the negative effects of direct observation.

Research in psychology, design, and education have shown that direct exposure to existing

solutions can lead to unconscious fixation, hindering generation of diverse and novel ideas
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(Kohn and Smith, 2011). However, modifying the nature of exposure, such as through

structured comparisons, curated examples, or partial copying, can preserve learning benefits

while enhancing creative performance (Hofstetter et al., 2020). This principle resonates

with concepts from optimization models that highlight the need to balance exploitation

of known successes with exploration in the co-search process (Poli et al., 1995; Bratton

and Kennedy, 2007). Our approach operationalizes this guided variation by automatically

generating variants that share the same core concepts as the original design, encouraging

generalization from core patterns rather than mimicry of specifics, and offering a scalable

alternative to previous methods that require human supervision.

This learning-creativity tension that motivates our specific empirical setting is well-

documented within crowdsourcing contests. Open contests, where participants view competi-

tors’ submissions and feedback, facilitate observational learning, leading to higher average

quality but also causing imitation and reduced originality (Wooten and Ulrich, 2015; Hofstet-

ter et al., 2020). Conversely, blind contests isolate designers, fostering broader exploration

and novelty but potentially limiting quality improvement due to the absence of learning

signals (Erat and Krishnan, 2012; Kornish and Ulrich, 2011). These findings suggest the

difficulty of simultaneously improving submission quality via learning and improving sub-

mission originality via designer creativity within the traditional crowdsourcing paradigms.

3 Generative Model for AI Variations

Before empirically testing the AI intermediation approach, we need a generative model to

create variations. While powerful, current off-the-shelf solutions often struggle with follow-

ing established stylistic principles and precise visual interpretation of design requirements.

The introduced visual artifacts can confuse designers rather than effectively transmit suc-

cessful design exemplars. We illustrate the challenges with current off-the-shelf models in

Appendix B. In this section, we provide details about the construction and validation of our
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custom generative pipeline.

Recall that AI intermediation aims to enhance creative outcomes by facilitating learning

from successful precedents while simultaneously mitigating fixation and fostering broader

exploration. To achieve this, we focus on three properties for the generated variations:

semantic alignment with the original design, visual distinctiveness, and visual reasonableness.

Semantic alignment ensures that the core, valuable ideas from successful submissions are

effectively communicated to other designers, enabling learning and quality improvement.

Visual distinctiveness introduces variation in the stylistic elements to prevent direct imitation

of the original exemplar. Both criteria stack on top of visual reasonableness: the variations

must look like reasonable logos, following graphic design principles and containing limited

artifacts. This is essential for adoption; our focus groups with logo designers indicated a

strong aversion to low-quality or overtly artificial outputs, which they deemed unlikely to

provide meaningful inspiration.

Achieving these properties requires an automatic generation process capable of both nu-

anced understanding and controlled synthesis. To this end, we developed an integrated

custom pipeline. The pipeline first focuses on extracting design concepts by translating orig-

inal logos into structured textual descriptions. This step helps to isolate the semantic essence

of a design from its specific visual rendering. Subsequently, these textual descriptions serve

as prompts for a fine-tuned text-to-image (T2I) model that generates logo variations. We

next detail the methodologies employed in each stage of our pipeline, including the specific

fine-tuning techniques that improve variations to effectively serve in the AI intermediation

approach.

3.1 Textual Description

The primary objective of the textual description stage is to accurately capture the origi-

nal logo’s core conceptual elements and format these concepts into structured prompts for

the text-to-image generation. We construct structured logo descriptions using two comple-
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mentary pieces: a brief summary that summarizes information from the creative brief, and

an open-form detailed description of the original exemplar generated by image captioning

models.

The brief summary explicitly represents key logo attributes and non-visual meta infor-

mation derived directly from the creative brief. Specifically, this part of prompt includes

contextual details such as the brand name, industry, and high-level styles, combined with

visually salient features such as colors, typography, and composition. To facilitate efficient

model learning, we employ standardized ‘trigger words’ (e.g. ‘logo style’, ‘symbol color’,

etc). These trigger words explicitly delineate distinct logo features, guiding the model to

establish systematic associations between textual descriptions and their corresponding visual

outputs. For example, we show a brief summary for a logo from Figure 1 below:

LogoAI, white background, brand name “Juneberry”, industry restaurant, logo style min-

imalist, modern, symbol color green, white, font color green

The open-form description complements structured prompts by capturing intricate visual-

semantic details. To generate the nuanced narratives, we employ an off-the-shelf image cap-

tioning model, JoyCaption, which provides rich and holistic descriptions of visual arrange-

ments and subtle stylistic nuances embedded within the logo (fpgaminer, 2025). Continuing

the previous example, the description expands:

logo object A minimalist logo featuring a white fork centered between green leaves with a

twig-like branch. Below, the text ”Juneberry” is written in a clean, green sans-serif font.

The open-form textual descriptions control the information flow from original exemplars

to variations: The more information descriptions contain, the more perceptually similar

variations are to the original exemplar. The lengthy descriptions capture core ideas of exem-

plars yet are not sufficient to articulate all visual details. We demonstrate this relationship

in Appendix D.

We combine the brief summary and the description into a standardized textual prompt.

The downstream T2I model is fine-tuned to generate logos using this prompt structure.
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3.2 Generate Logos

To generate logo variations from structured textual descriptions, we fine-tune a pre-trained

T2I model, Flux Schnell, using Low-Rank Adaptation (LoRA) (Black Forest Labs, 2024).

This approach begins with a state-of-the-art base model and progressively adapts its capa-

bilities to the specific context in two stages. The first stage focuses on instilling foundational

design principles to generate visually reasonable logos. The second stage further improves

the model’s capabilities by optimizing for a specific dimension of output quality (click at-

tractiveness) using contrastive learning techniques. Both stages contribute to improving the

model’s interpretation of textual prompts.

Our fine-tuning process is specifically designed to overcome limitations of off-the-shelf

models. We conducted focus groups with professional logo designers, to study their estab-

lished design process and the value of machine-generated solutions. The interviews high-

lighted two issues: First, machine-generated logos often fail to follow graphic design conven-

tions, sometimes rendering elements too realistically or with excessive complexity for logos.

For example, in Figure 2(A) (left), the fork appears overly realistic for a logo design, and

there is insufficient contrast between the color of the forks and the leaves. Second, these mod-

els can exhibit strong stylistic biases, such as the “clip art” tendency of DALL-E 3 shown

in Figure 2(A) (right), which produces outputs that appear generic and unprofessional. We

provide more examples of critical stylistic artifacts in Appendix B. Stylistic artifacts lower

the logo quality, and are so frequent in the current off-the-shelf models that designers cannot

efficiently learn and iterate on ideas from the produced variations.

The fine-tuning is designed to address these challenges. The initial Logo LoRA (Sec-

tion 3.2.1) directly addresses the challenge of instilling domain-specific knowledge, and trains

the model to generate visually reasonable logos that align with detailed textual prompts. The

Logo LoRA helps ensure that the generated logos are not only relevant to the original con-

cepts but also adhere to established design aesthetics. The subsequent Optimization LoRA

(Section 3.2.2) further elevates the generative performance by learning from survey-based
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preference data on click attractiveness.

Figure 2: Logos Generated by Different Models

Notes: Logos are generated by different models under the same prompt: (A)Left logo is generated by Dalle
3; Right logo is generated by Flux.1-schnell; (B) outputs by pre-trained model + Logo LoRA; (C) outputs
by pre-trained model + Logo LoRA + Optimization LoRA.

3.2.1 Logo LoRA

We first train the model to learn the graphic design conventions and various styles in logos.

To do this, we curate a large dataset of professionally-designed logos and train the model to

recreate these logos based on their textual descriptions.

Data. We acquired data from a crowdsourcing design platform to create a specialized

training set for this fine-tuning stage. Focusing on the restaurant industry as a proof-of-
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concept, we curated this dataset from past contest data, implementing several screening

criteria to enhance training feasibility and mitigate the impact of low-quality images. At

the contest level, we excluded contests requiring taglines or non-English brand names, given

the known challenges of training accurate text generation with diffusion models. At the

logo level, we removed images with low resolution and noisy backgrounds (e.g., logos on

business cards). This screening process produced approximately 1,000 contests, from which

we allocated 90% for the training set and 10% for hold-out validation; the training set

included about 25,000 logo images.

Fine-Tuning. We adopt a LoRA approach (Hu et al., 2021), a widely used technique for

fine-tuning large models for specific applications. LoRA constrains the model training to a

small subset of parameters, thereby retaining the original capabilities of the base model while

adapting it to the specific task of logo generation. This approach is computationally efficient

and ensures that the fine-tuned model can still remember concepts from the base model for

logo generation. For example, if the fine-tuning logo dataset contains no examples with birds

but the base model possesses prior knowledge of what a bird looks like, the fine-tuned model

can still produce a visually coherent bird-themed logo.

In training, we train both the text encoder and the denoising network. The text encoder

processes the structured textual prompt and converts it into an embedding that guides the

image generation. We fine-tune the text encoder to help the model learn the trigger words

introduced in Section 3.1. The denoising network is the primary image generator. It takes

text embedding as a condition and learns to synthesize a logo that visually reflects the

prompt.2

We illustrate the outputs from the Logo LoRA in Figure 2(B). Compared to the outputs

of off-the-shelf models, the outputs are more aligned with professionally-designed logos from

the crowdsourcing platform: they follow design principles better.

2Appendix C provides additional details about LoRA and latent diffusion models.
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3.2.2 Optimization LoRA

In the Logo LoRA, we train the model to reconstruct professionally-designed logos. One

question is that even within the curated set, there still exist variation in quality, and the

model could be further improved if we train the model to yield more high-quality examples

and avoid low-quality examples. In our proof-of-concept, we define the logo quality by how

well it can attract clicks in display ads. Online advertising is a one common use case for brand

logos among small businesses. Our findings can be extended to other quality dimensions,

such as visual appeal, brand perceptions, or memorability.

Data. We measure click attractiveness using an online survey. We first select 50 pairs of

logos from contests of restaurant brands in our training data. These 50 pairs are selected

so that they feature similar semantic concepts (such as a fork and green leafs), but they

are visually different designs. One illustrative example is shown in Figure 3. Each survey

participant reviewed 25 logo pairs, and for each pair, indicated which logo they are more

likely to click. We recruited 100 participants so that each pair receives 50 responses.

Figure 3: Illustrative Pairs for Optimization LoRA Training

Notes: The two logos are similar in their composition and style. However the left logo has substantially
higher click attractiveness (66%) than the right logo (34%)

We assume that holding semantic logo attributes fixed, visual patterns not captured in

the attributes can drive a logo to be more or less click-attractive. In Appendix E, we com-

pare visual characteristic of the high-quality and low-quality logos (Liu et al., 2020; Zhang
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et al., 2017). The color brightness and the symmetry of the logos are significantly different

between the groups. This observation is aligned with previous research that symmetric logos

are perceived to be more preferable and that brightness shapes perceived organizational ori-

entation that could interact with perception of restaurant brands, and this could contribute

to higher click attractiveness (Luffarelli et al., 2018; Smale and Utchhash, 2025).

Fine-Tuning. To capture the visual patterns of logos with higher click attractiveness and

further align the image generation with logo design conventions, we use a separate LoRA

with a contrastive loss (see details in Appendix C). The fine-tuning is constructed in the

manner that for each pair of logos, the model learns to generate logos similar to the logo that

is performing better (higher click attractiveness) and different to the logo that is performing

worse.

We illustrate variations generated by adding the Optimization LoRA to the Logo LoRA

in Figure 2(C). In Appendix E, we show that Optimization LoRA systematically increases

the color brightness and symmetry in outputs to increase click attractiveness.

3.3 Generative Validation

We conducted extensive validation to demonstrate that the proposed generative pipeline

yields reasonable logos that are semantically aligned with the original logo exemplars and

are visually distinct. We provide the validation details in Appendix E.

4 Experiment

To empirically test whether AI intermediation can effectively facilitate learning across de-

signs while avoiding creating fixation, we conduct a field experiment. The field experiment

is implemented within a logo design contest, where we hired professional designers to par-

ticipate. Specifically, we compare the performance of designers under AI intermediation to

the performance of designers in two traditional types of contests: the open condition with
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full exposure to exemplars and the blind condition with no provided exemplars.

The open and blind benchmarks represent the two poles of the learning-creativity tradeoff:

the open condition often yields higher logo quality at the expense of lower originality, due

to creative fixation. In contrast, the blind condition can lead to higher originality but

lower quality, because designers are not learning from each other. The proposed variation

condition is designed to strike a balance between these extremes. We hypothesize that AI

intermediation can effectively ‘perturb’ signals of success; the variations are close enough

to communicate valuable core concepts (improving quality over the blind condition), yet

visually distinct enough to mitigate the strong convergent pull that causes fixation (boosting

originality over the open condition).

4.1 Study Design

The core of our experiment involves manipulating designers’ access to a curated set of 60

logo exemplars for a small business restaurant. These logo exemplars were collected by the

focal restaurant four years prior to our research, and received varying click attractiveness

scores in our online survey, and thus spanning across the quality spectrum. We manipulated

whether these exemplars are provided to professional designers as an inspiration to create

a new logo for the same restaurant in a crowdsourcing design contest. The crowdsourcing

design contest had a typical contest prize of $250 to incentivize participation by experienced

designers.3

Participants were randomly assigned to one of three experimental conditions:

• Open condition: Designers viewed the contest brief alongside a gallery displaying the

60 pre-seeded exemplars and their click-attractiveness rating.4

3The focal restaurant obtained the initial logos in a private crowdsourcing design contest in 2021. These
logos are not public to web search, thus designers in our study have no external access to logo exemplars
unless provided by us. The focal brand was also not included in the training of the generative pipeline in
Section 3.

4We convert click attractiveness to a star scale of 5 that designers are familiar with.
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• Variation condition: Designers viewed the brief and a gallery presenting four AI vari-

ations (created by our model) for each of the 60 pre-seeded exemplars, alongside the

original exemplars’ ratings.

• Blind condition: Designers received only the contest brief, with no access to pre-seeded

exemplars or their variations.

For Open and Variation conditions, the exemplars (or their variations) are ranked by their

click attractiveness and presented on 5 pages, with 12 exemplars (or 48 variations for 12

exemplars) presented on each page.

We illustrate the experimental conditions in Figure 4. All participants can view the

creative brief with information about the restaurant brand and a textual description of

client preferences. Additionally, in the open condition, the participants could view the 60

logo exemplars, and in the variation condition, we displayed 4 variations for each of the

exemplars (without showing the original logos). The logo exemplars were organized across

five gallery pages according to their click attractiveness. Access to the galleries is restricted

to assigned designers based on their designer IDs. Designers in the variation and blind

conditions have no access to these original logos. Designers were informed that the goal

was to create logos effective at attracting clicks in online display ads, and for the Open and

variation conditions, that the gallery ratings reflected the click-attractiveness.

The use of a gallery of logos within a brief balances the realism and methodological rigor.

First, our study design follows the standard industry practice of including inspirational

examples within a creative brief. Clients often provide examples of their favorite logos to

indicate stylistic preferences. These examples can include internationally-recognized brands

such as BMW or Lacoste. Our study extends this idea by leveraging high-quality exemplars

for the client’s brand. Second, by providing a fixed set of exemplars from the outset, we

ensure that every designer, regardless of when they join, operates within a consistent and

controlled informational environment. This contrasts with traditional open contests, where

designs are typically shown as they are submitted to the platform.
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The contest ran for seven days and followed typical specifications on the platform. To

simulate realistic client feedback (ratings) during the contest, we randomly sampled 10 new

submissions daily from each condition and provided ratings to designers. These ratings were

sent through the platform in private messages, so that each designer could only see the rating

for their own work if it was among the sampled submissions.5 We ensured that designers

remained unable to observe any information about other designers’ submissions during the

contest.

Figure 4: Experiment Design

Notes: Upon registration, designers are randomized into three conditions: designers in the blind condition
observe the textual creative brief; designers in the open condition observe the textual brief and a gallery
that presents 60 exemplars with their click attractiveness; designers in the variation condition observe the
textual brief, AI variations, and click attractiveness of original exemplars.

5To collect these ratings, we measured click attractiveness using online survey, similar to Study 2 in
Appendix E. To ensure comparability, we benchmark the designers’ submission to the original exemplars
from the brief.
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A total of 485 designers registered for the experiment, with 208 designers submitting at

least one logo (Table 1). These participants were roughly equally distributed across the three

conditions. While the blind condition showed a slightly higher participation ratio among

registered designers, this difference was not substantial compared to the variation condition,

suggesting that any unfamiliarity with the variation condition did not significantly deter

participation.

Table 1: Participants across Different Conditions

Condition Registered designers Participating designers Submissions

Open 155 65 (41.9% of registered) 319

Variation 161 64 (39.8% of registered) 367

Blind 169 79 (46.7% of registered) 341

Notes: Registered designers are not required to participate in the contest. We define “participating designers”
as designers submitting at least one design.

To characterize the participating designers and validate the randomization, we collected

designer-level variables representing their experience and expertise from platform data. In

Appendix F, we provide the variable definitions and descriptive statistics. Participating

designers had high client ratings and substantial experience, with an average of over 20 com-

pleted projects. Balance checks on the designer attributes across the three conditions reveal

no notable differences. Similarly, checks on participation patterns, including submission

depth, entry timing, and continuous engagement, showed no substantial differences across

conditions. This suggests the experiment was conducted with experienced designers under

comparable conditions, allowing for a robust test of AI intermediation.

4.2 Originality

Recall that one primary objective of AI intermediation is to mitigate creative fixation and

foster greater originality compared to direct exposure. Figure 5 provides an illustrative

18



example of creative fixation. In the open condition, designers submit multiple adaptations

of a leading design: the submissions closely resemble the original exemplar with minimal

changes in the semantic elements and typography. In contrast, presented with AI variations

that are visually different from the original exemplar, designers of variation condition creates

more varied design explorations, suggesting a broader diffusion of the core idea.

Figure 5: Diffusion of Leading Ideas in Open and Variation Conditions

Notes: The upper panel shows one leading exemplar designers of the open condition observe and subsequent
submissions sharing close similarity to the exemplar. The lower panel shows AI variations of the same leading
exemplar designers of the variation condition observe and the subsequent submissions sharing close similarity
to the exemplar.

We investigate the “incremental originality” of submissions, defined as their distinctness

from their most similar leading exemplars. We measure incremental originality using two

complementary approaches: a scalable, embedding-based metric and a perception-based
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metric derived from human evaluations (Liu et al., 2020; Burnap et al., 2023; Compiani

et al., 2025).

Embedding-Based Originality. We use a pre-trained CLIP model to extract embeddings

for all submissions and the 12 leading exemplars displayed on the first page of the gallery.6

CLIP captures both visual and conceptual information and has been previously used in

marketing research (Radford et al., 2021; Rawat, 2024; Grewal et al., 2024). The embedding-

based originality of each submitted logo i is calculated as its minimum cosine distance to

the 12 leading exemplars:

Originality Embi = min
i′∈Leading Exemplars

ei · ei′
|ei| ∗ |ei′ |

Perception-Based Originality. We collected perceived similarity ratings between the

submitted logos and leading exemplars on three dimensions: color palette, composition, and

style. These dimensions are salient logo characteristics that appear in creative briefs and are

important in logo evaluation (Dew et al., 2022; Henderson and Cote, 1998). For each pair of

logos and each dimension, 15 survey participants evaluated similarity using a 7-point Likert

scale. The three dimensions are highly correlated (Corcolor,composition = 0.826;Corcolor,style =

0.855;Corcomposition,style = 0.944), and Principle Component Analysis suggests a common

factor explaining 90.8% of variation. We thus use the mean over these three dimensions to

define the perception-based originality score for each submitted logo i:

Perceived Originalityi = min
i′∈Leading Exemplars

AV G(∆Colori,i′ ,∆Stylei,i′ ,∆Compositioni,i′)

We then conducted a regression analysis at the submission level, clustering standard

6We focus on the first page because designers typically refer to top-rated logos to understand client
preferences, and our gallery data shows most visits occur on the first page.
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errors at the designer level to account for multiple submissions from the same participant:

Originalityi =
C∑

c=1,2,3

βc1[Condd(i) = c] + γDayi + δTXd(i) + ϵi (1)

ϵi = ηd(i) + ωi (2)

where, Originalityi represents the embedding or perception-based originality of submission,

βc corresponds to the 3 factors for Open, Blind, and Variation conditions; Dayi is the

date where i is submitted; d(i) is the designer creating i; and Xd(i) represents the designer

d(i)’s performance characteristics from the randomization checks. We provide the estimated

coefficients in Table F.4 and Table F.5.

Figure 6 summarizes differences in the embeddings-based and perception-based origi-

nality measures across the experimental conditions. Our analysis focuses on the top-50

submissions with the highest quality ratings in each group. We consider the high-quality

submissions to align with the business objective: brands choose aesthetically-appealing de-

signs among the high-quality options.7 For both originality measures, the variation con-

dition substantially outperforms the open condition, reaching levels similar to the blind

condition(∆embedding originality
open,variation = −0.027, SE = 0.010, t = 2.551, p = 0.011;

∆embedding originality
variation,blind = −0.008, SE = 0.013, t = 0.562, p = 0.574; ∆perceived originality

open,variation =

−0.569, SE = 0.236, t = 2.416, p = 0.016; ∆perceived originality
variation,blind = −0.106, SE = 0.332, t =

−0.320, p = 0.749).

These results confirm that AI intermediation successfully mitigates creative fixation,

enabling designers to produce more original high-quality submissions compared to direct

exposure to leading exemplars. The similar level of originality between submissions from

Variation and Blind conditions suggests that the mitigation is as effective as not showing

any exemplar information to designers.

7In Appendix F.3, we replicate the analysis of the originality scores and demonstrate that our main
findings are robust to different definitions of high-quality designs.
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Figure 6: Mean Regression Estimates on Submission Originality across Conditions

Notes: Embedding-based (left) and perception-based (right)

4.3 Quality

Having established that AI intermediation enhances originality compared directly sharing

the examplars among designers, we next examine whether this increased creativity comes at

the cost of submission quality.

To assess the impact on average submission quality, we conducted a similar regression as

in the originality analysis8. Pairwise contrasts in estimated condition coefficients (β̂Open =

0.4981; β̂V ariation = 0.4811; β̂Blind = 0.4282) reveal that the AI Intermediation (Variation)

condition significantly outperformed the blind condition, yielding a 5.5% average increase in

click attractiveness

(∆click
variation,blind = 0.053, SE = 0.027, t = 1.993, p = 0.046; Figure 7). The performance

of the variation condition was comparable to that of the open condition (∆click
open,variation =

0.017, SE = 0.025, t = 0.678, p = 0.498). These results suggest that variations effectively

transmit valuable information from leading designs, facilitating a level of learning and quality

improvement similar to direct exposure.

In Appendix F, we investigate whether AI intermediation improves the quality of top

designs using a quantile regression. Figure 8 presents the contrasts between condition fac-

8See Table F.3 for estimated coefficients.
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Figure 7: Mean Regression Estimates of Click Attractiveness

tors. On the x-axis, we report the submission quality quantile τ . On the y-axis, we show

the difference in estimated coefficients for different experimental conditions. The variation

condition consistently outperforms the blind condition. The difference in performance is

between 5% to 7.5% in click attractiveness. Comparing the open condition and the variation

condition, the open condition has a thin performance edge for medium τ . Otherwise, these

experimental conditions yield similar performance. While there is some indication that AI

intermediation might also lead to higher quality among the very top designs compared to full

exposure (τ > 0.9), further research with larger samples is required to confirm this specific

effect with greater statistical confidence.

Figure 8: Quantile Regression Estimates of Click Attractiveness across Conditions

Notes: Figures show estimates of contrasts between condition factors with 95% CI
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In summary, AI intermediation not only enhances originality but also maintains high

submission quality, achieving performance levels on par with full exposure while signifi-

cantly outperforming the blind condition. This indicates that the learning benefits derived

from observing leading exemplars are largely preserved in AI variations, demonstrating that

increased creativity does not come at the expense of quality.

4.4 Relative Contribution in Human-AI Co-Creation

Recall that under the AI intermediation approach, the generative model produces visually

distinct design variations, which human designers review as an input to their creative process.

We next investigate the relative contribution of AI variations versus the subsequent human

effort on the creative outcomes.

To understand how much value human creativity adds beyond machine-generated designs,

we need a baseline representing what AI variations could achieve with minimal human inter-

vention. We thus recruited professional designers to create refined variations: AI variations

that are polished by human designers to a ready-to-use state with minimal modifications to

the stylistic and semantic elements. The refined variations also serve as a proxy for outputs

by highly capable future generative models.

We collected refined variations of all 48 AI variations that appeared on the front page of

the brief in the variation condition (Section 4.1). We provide two examples of the refined

variations in Figure 9: Refined logos (Column B) are tightly following their corresponding

AI variations (Column A). Designers implement minor changes to make logos more aligned

with the graphic design principles, such as improving the color contrast, cleaning the lines,

and using the standardized fonts.

We validated that the refined images closely follow the initial AI variations using CLIP-

based embeddings. The embedding-based originality scores for the refined images have 0.992

correlation with the originality scores of the variations (Figure F.7). This confirms minimal

conceptual deviation during refinement. On the other hand, human refinement leads to an
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Figure 9: Examples of Refined Variations

Notes: Column (A) shows two machine-generated logos; Column (B) shows the corresponding refined ver-
sions.

improvement in design quality (click attractiveness; mean difference = 0.05, SE = 0.009,

t = -5.535, p < 0.001). This suggests that there is still potential to further improve the

generative capacity for a model proposed in Section 3.

Quality. Figure 10(A) compares click attractiveness of the refined variations to high-quality

submissions from the variation condition (top 50 in quality ratings). We focus on high-quality

submissions because refined variations are based on leading exemplars, and a fair comparison

will be against leading human designs. High-quality submissions from the variation condition

demonstrate substantially higher quality than refined variations (∆click = 0.200, SE =

0.018, t = 10.891, p < 0.001). This suggests that professional designers can introduce

quality substantial improvements beyond a pure refinement of the AI designs.

Originality. Figure 10(B) conducts the same comparison on embedding-based original-
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Figure 10: Mean Regression Estimates of Click Attractiveness and Originality of Refined
Variations and High-Quality Submissions of Variation Condition

Notes: (A) shows estimates of click attractiveness; (B) shows estimates of embedding-based originality.

ity. High-quality submissions from the variation condition demonstrate substantially higher

originality than refined variations (∆originality = 0.063, SE = 0.011, t = 5.796, p < 0.001),

indicating that designers use AI variations as creative springboards to explore broader design

spaces rather than simply refining AI output.

Our findings highlight the synergistic contributions of the AI variations and human de-

signers. While advancements in generative modeling can provide increasingly polished design

concepts potentially reaching the quality of refined variations, human creative intervention

remains crucial for exceeding baseline machine capabilities and achieving truly novel out-

comes. Human designers do not merely polish designs, but introduce creative ideas to

improve both originality and quality in the visual design process.
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5 Conclusion

This paper proposes using generative AI as intermediation to facilitate creative learning:

communicating the key ideas of successful concepts across designers without inducing creative

fixation. We demonstrate the effectiveness of AI intermediation in a real-world logo design

contest involving professional designers. Our proof-of-concept study highlights two primary

effects. First, AI intermediation provides quality guidance: after observing variations of the

high-quality exemplars, professional designers produce higher-quality logos than designers

with no exemplar information. Second, AI intermediation helps to mitigate fixation: high-

quality submissions from the variation condition exhibit higher incremental originality than

those from the open condition. Our additional study further decomposes the contributions

from machine and human efforts in achieving incremental originality in high-quality designs.

While generative models do provide visually distinctive starting points, human efforts remain

a more important driver in exploring the design space and contributing to the originality of

designs.

These findings present important implications for visual design. By facilitating a portfolio

of diverse high-quality concepts, AI intermediation can provide brands with more viable

options that cater to different stylistic preferences and design objectives. We demonstrate

this mechanism in a competitive design context, but the potential applications extend to

the collaborative environments. AI intermediation can act as a bridge for sharing creative

information between the design teams: When promising concepts are identified from market

research or managerial guidance, AI variations can diffuse these concepts without causing

creative fixation.

Limitations and Future Research

Future studies could investigate how AI intermediation mechanisms could be adapted when

the goal is to support iterative refinement by the original authors versus peers. Our cur-
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rent study focuses on sharing information across designers while avoiding creative fixation.

However, AI variations could also be applied dynamically to participants’ own submissions,

providing guidance for subsequent creative exploration. This calls for a more nuanced frame-

work that considers variation not merely as a design artifact, but as a function of intent,

timing, and audience within the creative process.

Additional applications could explore more dimensions of ‘variation’. In our proof-of-

concept, we focus on brand logos and demonstrate that the length of structured descriptions

from our pipeline can provide limited controllability over the perceptual similarity of vari-

ations with original exemplars. In more complex creative domains such as advertisements,

product aesthetics, or architecture, variation can occur along multiple and orthogonal dimen-

sions, such as shape, color, function, narrative tone, and cultural references. An important

line of inquiry concerns whether generative models are capable of producing dimensionally

controlled variations, and how those dimensions interact with design goals.

A third avenue for future work lies in expanding the AI intermediation paradigm to

domains beyond visual design. Language-based creativity such as product naming and slogan

writing, multimedia campaigns, and cross-modal design including packaging or branding

experiences, all involve complex mappings between ideas and representations. Investigating

whether similar AI-intermediated abstraction techniques can foster creative learning in these

domains could significantly broaden the scope and utility of the intermediation approach.

Additionally, deployment of such systems would benefit from an understanding of human

trust, interpretability, and cognitive reception of machine-generated content, especially when

it is positioned not as a co-creator but as a facilitator of communication.
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A Logo Design Contests

In logo design contests, clients post their brief publicly. Brief usually includes the basic

brand information and expected logo attributes. Some clients will attach a few logo designs

to provide “style inspiration”. During the contest, designers can submit multiple designs,

and clients can provide ratings or feedback to submissions. After the contest ends, the client

selects a winner and the winning designer is awarded the prize. Figure A.1 provides two

example briefs and sampled submissions.

Figure A.1: Illustrative Brief and Submissions

We tried to find empirical evidence of the learning-creativity tradeoff from our acquired

logo design contest dataset. Specifically, we look into whether open contests produce logos
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that perform better and blind contests produce more original logos. We sampled 2000

contests in the recent 5 years. For originality, same as in the experiment, we use embedding-

based method. We first extract the CLIP embeddings of logo images, then for each logo,

calculate the average embedding distance between its embedding and embeddings of other

logos of the same contest. To be able to compare across contest types, we take the average

submission (of the contest) originality to measure the contest-level originality. Figure A.2

shows the distributions of contest originality across the two types of contests. From the plot

and t-test, we can clearly see that blind contests produce more original submissions.

Figure A.2: Submission Originality of Open and Blind Contests

The quality comparison of open and blind contests are challenging: there is no objective

quality measure of submissions. While we can compare client ratings, they are very noisy

and subjective. Also, not all submissions are rated and it is not sure what criteria clients

use to select submissions to provide feedback. Figure A.3 shows the contest-level average

submission ratings across two types of contests, which are very similar.
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Figure A.3: Submission Quality of Open and Blind Contests
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B Logos Generated by Off-the-Shelf Models

We provide more visual examples to show the insufficiencies of off-the-shelf models in generat-

ing variations. We first demonstrate the lack of visual distinctiveness in using image-to-image

models. We then show the problems of off-the-shelf text-to-image models when using the

structured textual description as the prompt.

Figure B.1: Variations Generated by Image-to-Image Model

Notes: The original logo is on the left, and the four images on the right are variations generated using
image-to-image based on Flux Schnell (Black Forest Labs, 2024). Flux Schnell is one of the most advanced
open-sourced commercial model and the base model of our model. The four variations are very similar in the
form, which invalidates our requirement that the variations should look visually distinctive from the original
logo.

36



Figure B.2: Variations Generated by Off-the-Shelf Text-to-Image Model

Notes: The variations are all for the same original logo in the image-to-image task and as in the illustration
of the main content. (A) shows the outputs of Flux Schnell. The variations lack of basic design principles:
the fork is white, following the original logo idea, but there is no color contrast to the background color.
Also, the distance between the graphic elements and the typography is too large. Such variations can hardly
be regarded as useful by designers. (B) shows the outputs of Midjourney, one of the leading commercial
models. These variations follow the original design idea well, but are too complex to be used as logos. (C)
shows the outputs of Imagen, Google’s most advanced image generative model. These variations look like
clip art and tend to lose the style of the original logo. For a more obvious illustration, see Figure B.3.
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Figure B.3: Additional Variations Generated by Imagen

Notes: The original logo is on the left, and the four images on the right are variations generated using
Imagen. Similar to the four variations generated in Figure B.2, these variations look like clip art. The
uniformity in output style leads to the misalignment between style of original design and variations.
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C Technical Details in Model Training

The pre-trained model that we use is a diffusion model. Diffusion models work by reversing

a diffusion process to synthesize data. The model training process is shown in Figure C.1.

Initially, the image is encoded to image latent. Then a forward diffusion process gradually

adds noise to the latent, transforming it from the initial state z0 to a Gaussian noise zT . At

time step t, the noised latent is:

zt =
√
1− αtz0 +

√
αtϵ

Where ϵ is a Gaussian noise. The goal of Diffusion models is to learn to denoise the added

noises so that a noisy state zT can be reversed back to a image latent z0. Therefore, at t,

the loss is

||ϵ− ϵθ(zt, c, t)||2

Here, θ is the model, c is the condition (i.e., embedding of the prompt). The denoised initial

state z0 is then decoded to obtain the final image. The loss is, in essence, a reconstruction

loss of the original image. While minimizing the loss in the training, the model is learning

to reconstruct the original logo as close as possible given the logo description (prompt), thus

implicitly forcing the model to learn graphic design principles and to align with the prompt.

For fine-tuning, we use LoRA, a method that allows efficient adaptation of pre-trained

models for downstream tasks (Hu et al., 2021). Suppose the cross-attention layer of the pre-

trained model is W0 ∈ Rd×k, where d, k are the original and output dimensions respectively.

LoRA trains ∆W to minimize the denoising loss. It is efficient for it decomposes ∆W as

∆W = BA, where B ∈ Rd×r and A ∈ Rr×k, with r being way smaller than both d and

k. Intuitively, LoRA is compressing the updated information to low-rank matrices, thus the

name of it. During inference, the weights of the new model θ + θlora is W0 +∆W .

In training of Logo LoRA as described in Section 3.2.1, we set the learning rate of the

denoising network to be 6 × 10−6 and text encoder network to be 3 × 10−6; r to be 128;

batch size to be 10; and a cosine learning rate scheduler. The training converges at around

12 epochs, and takes less than 2 days on an A100 GPU.

For Optimization LoRA, instead of reconstruction loss, we propose to use a contrastive

denoising loss:

γ||ϵp − ϵθ+θclick(xt, c, t)||2 + ||ϵn − ϵθ−θclick(xt, c, t)||2
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Here, each loss is calculated as the sum of the loss for the noise added to the positive sample

ϵp and the noise of the negative sample ϵn. γ represents the level of click rate differences

between the two logos and is calculated as ln(a
b
), where a is the larger click rate within a

pair, and b is the smaller click rate. c represents the common prompts of the two logos. The

gradients of θclick with respect to the contrastive loss are weighted by γ’s of the pairs, meaning

that the model learns more information from the pairs with larger click rate differences.

In training of Optimization LoRA as described in Section 3.2.2, we only update the

denoising network, and the learning rate is 1 × 10−5. The dimension of the Optimization

LoRA is set to be 16. We use a cosine learning rate scheduler and batch size of 1. We train

the model for 20 epochs. During inference, we set the weight of Optimization LoRA to be 1.
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D Description Length to Control Variations

In this section, we demonstrate how lengths of descriptions influence the perceptual similarity

of variations to original exemplars. We inject system prompts to the image captioning model

to limit the length of the descriptions. We test descriptions of varying lengths, from 10 words

to 50 words, generate variations based on these descriptions, calculate the cosine distances

between variations and original exemplars, and present the results in Figure D.1. As length

increases, we observe an overall decreasing trend in cosine distances between variations and

exemplars, meaning that as the descriptions become richer in information, the variations are

more perceptually similar to the exemplars.

Figure D.1: Model Validation Results

Notes: The heights of bars represent group means and the bounds represents 1 standard deviation. The p
values are from paired t-tests on variations generated by descriptions of consecutive lengths (e.g. 15 v.s 20;
20 v.s 30).

However, the level of controllability on variations using description length is not perfect.

We observe that there is no difference between the distances to exemplars of variations

generated based on descriptions of 40-words and 50-words. This is partly because logos are

of relatively low complexity and the majority of its information can be described in short

texts. The other reason is that the image captioning model is not trained to necessarily

provide more information when increased in length. We leave achieving controls on variation

and testing its effectiveness on human designs through AI intermediation for future research.
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E Model Validation

We validate the proposed AI generation using four studies. Study 1 shows that AI variations

are semantically aligned with the original logo; Study 2 compares the performance of two

fine-tuning steps and demonstrate how the Optimization LoRA impacts the outputs; Study

3 show that AI variations are visually distinctive from the original logo compared to vari-

ations generated using image-to-image methods; Lastly, Study 4 examines how the level of

distortions seen in model outputs influences logo perceptions, which serves as a test on the

reasonableness of model outputs.

Study 1. To test whether our generated variations are semantically aligned with the original

logos, we compared their perceived resemblance to the original logo against that of retrieval-

based “most similar” logos from the same design contest. We first sampled 60 original logos

from different brands. For each of these 60 logos, we used our full model pipeline (including

both Logo LoRA and Optimization LoRA) to generate one variation. For each logo, we

also identified a most similar logo from the same contest by humans. Human subjects were

then presented with pairs consisting of our AI variation and the retrieval-based most similar

logo, and asked to select which of the two better resembled the original logo. Each pair was

evaluated approximately 100 times.

The results, illustrated on the left of Figure E.1, demonstrate strong semantic alignment.

The mean selection rate for our AI variations was 0.812 (t=52, significantly different from

0.5), indicating that subjects perceived our variations as dominantly and substantially more

resemblant to the original logo’s core ideas than the most visually similar alternative from

the same contest. This supports the conclusion that our pipeline effectively captures and

re-generates the semantic essence of the original designs.

Study 2. To assess the effectiveness of the Optimization LoRA fine-tuning stage in en-

hancing a specific dimension of logo quality, in this case, click attractiveness, we compared

variations generated with and without this optimization. Using the same 60 original logos

from Study 1, we generated two sets of variations: one set using the pipeline with only the

Logo LoRA fine-tuning, and another set using the full pipeline including the Optimization

LoRA. This resulted in 60 pairs of logos (one with Optimization LoRA, one without, both

derived from the same input description).

We first noticed distributional shifts in model outputs. For the 60 pairs, logos generated

with Optimization LoRA exhibits higher levels of brightness (mean difference = 5.61, SE =

2.99, p = 0.065) and symmetry (mean difference = 0.0051, SE = 0.0024, p = 0.04). One

illustrative example of the outputs without (on the left) and with Optimization LoRA (on

the right) is in Figure E.2. We can see that Optimization LoRA does not significantly change
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Figure E.1: Model Validation Results

Notes: The left figure shows the selection rates of AI variation when presented against the most similar logo
from the same contest; the right figure shows the selection rates of variation generated with the Optimization
LoRA when presented against the variation generated without the Optimization LoRA

the logo rendering, but does minor perturbations on features positively related to higher click

attractiveness.

Figure E.2: Logos Generated Using the Same Prompt without (Left Logo) and with (Right
Logo) Optimization LoRA

Notes: The right logo exhibits higher level of symmetry and uses shades of green that are of higher brightness.

We then study whether such minor changes indeed lead to higher click attractiveness.

Similar to the data collection for training the Optimization LoRA, human subjects in an

online survey were shown these pairs and asked to select the logo they were more likely to

click on. Each pair was evaluated approximately 100 times.

The findings, shown on the right of Figure E.1, indicate that the Optimization LoRA sig-

nificantly improved the click-attractiveness of the generated logos. The mean selection rate
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Table E.1: Visual Features

Feature What It Is About Measure

Chromatic con-
trast

Perceptual distance
between two domi-
nant spot colours

∆E00(c1, c2), the CIEDE2000 colour–difference
between Lab centroids cj = (L∗

j , a
∗
j , b

∗
j) of the

two largest k-means clusters in Lab space.

Luminance con-
trast

Legibility of light vs.
dark colours

Llight + 0.05

Ldark + 0.05
, where L = 0.2126Rlin +

0.7152Glin + 0.0722Blin and Rlin ={
R/12.92, R ≤ 0.03928(
R+0.055
1.055

)2.4
, else

(similarly for

G,B).

Colourfulness Overall chromatic
strength

M =
√

σ2
rg + σ2

yb + 0.3
√
µ2
rg + µ2

yb, with rg =

R−G, yb = 1
2
(R +G)− B ; µ, σ are the mean

and SD of those channels.

Brightness Typical lightness of
coloured pixels

L∗ =
1

N

N∑
i=1

L∗
i

Saturation
(chroma)

Average colour
strength

C∗
ab =

1

N

N∑
i=1

√
a∗2i + b∗2i

Visual complex-
ity

Density of lines ρE =
#(Canny edges)

total pixels

Horizontal sym-
metry

Bilateral balance of
the mark

SH = 1− 1

WH

W−1∑
x=0

H−1∑
y=0

[
I(x, y)−I(W−1−x, y)

]2
,

where I(x, y) is greyscale intensity in [0, 1] and
the image is width W , height H.

Hue diversity Breadth of the hue
palette

H = − 1

log2K

K∑
k=1

pk log2 pk, with K = 36

equal-width hue bins and pk their frequencies.

White back-
ground share

Fraction of blank can-
vas

RW =
#pixels s.t. L∗ > 95, |a∗|, |b∗| < 3

total pixels
.

Notes: Definitions of the image-level logo metrics used in the analysis. All RGB values are first scaled to
[0, 1]; Lab values follow the CIE 1976 standard.
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Table E.2: Differences in Visual Features between Well-Performing and Ill-Performing Logos

Feature Mean difference (SE)

Chromatic contrast 5.22 (5.80)

Luminance contrast 0.35 (1.24)

Colourfulness 0.03 (0.03)

Brightness 6.67** (3.45)

Saturation 4.45 (3.93)

Visual complexity 0.0008 (0.0014)

Horizontal symmetry 0.012* (0.0045)

Hue diversity −0.52 (1.11)

White–background share 0.021 (0.027)

Notes: Sample (n=50 per group) differences between the two logo sets. Standard errors in parentheses.
∗p < 0.05, ∗∗p < 0.01.

for variations generated with the Optimization LoRA was 0.579 (t=5.075, significantly dif-

ferent from 0.5). This suggests that even with a relatively small labeled dataset (50 pairs for

training), the contrastive fine-tuning process effectively guided the model towards producing

outputs with enhanced performance on the targeted quality dimension. We conjecture that

the incremental improvement in model performance increases with the size of the training

data and the prevalence of common visual patterns in well-performing training examples.

Study 3. We quantitatively assess the level of visual distinctiveness in AI variations and

benchmark our model against image-to-image method based on Flux Schnell.

We continue using the 60 sampled logos in Study 1 and 2. We use the proposed model to

generate 4 AI variations for each logo. We then use image-to-image method of Flux Schnell

(The method takes the original logo and structured textual description of the original logo

as input) to create 4 variations for each logo. To measure the visual distinctiveness of a

set of variations to the original logo, we use the average CLIP embedding distance between

variations and their original logo. This gives us 60 average distances of AI variations and

image-to-image variations.

Paired t-test shows that AI variations are substantially more distinctive from original

logos (mean difference = 0.0414, SE = 0.0008, t = 51.102, p < 0.001). This shows that our

proposed pipeline generates variations that are more visually distinctive.

Study 4. The questions that we want to address is how would typos and graphic imper-
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fections on machine-generated logos influence the perception of the logo? This is important

because in AI intermediation, designers observe AI variations rather than the original sub-

mission, and AI variations tend to contain distortions. If such distortions significantly drive

the perception of logos, the true information (logo idea) that we want to convey in the

variations might be compromised.

We select a perceptual dimension that is relatively straightforward for evaluation: the

industry relevancy of the logo style. We select 6 logos from each of three industries: health-

care, food, and real estate. For each logo, we use the image-to-image function of Stable

Diffusion to manually add distortions similar to those we observe in model outputs. Thus,

we have 18 original logos and 18 distorted logos. We then collect the perceived industry

relevancy of these logos from an online survey. In the survey, subjects rate the perceived

industry relevancy of the logo style to the healthcare industry on a scale of 1 to 7. The

survey is 18 pages long, corresponding to the 18 original logos, and on each page, either the

original version or the distorted version is presented. We recruited 400 subjects, and the

rating distributions are shown in the Figure E.3. Here, the three rows show the ratings of

food, healthcare, and real estate logos respectively. Ideally, we should see a large density of

ratings close to 1 for the food and real estate logos, and a large density close to 7 for the

healthcare logos. Several messages that we can see from the distributions are: 1. There is

large heterogeneity across the perception of the industry relevancy of styles, especially for

the healthcare logos. This coincides with previous findings. 2. The impact of distortions on

perceptions also depends on specific logos. For example, in f3, we see essentially the same

responses from the original and distorted logos. In f1 and f4, however, the original logos

are perceived to be significantly less relevant to the healthcare industry than the distorted

versions.

To control for subject-level variations, we run the following model to estimate the logo

effects:

ratingij = logoi + uj industryi ∗ versioni + ϵij

where ratingij is given by subject j on logo i, industryi and versioni represents the industry

and version (original or distorted) of logo i, and uj here is the subject random effect. Since

we have 3 industries and 2 versions, the random effects we model is a 6× 6 structure. The

estimates of the logo effects are shown in Figure E.4. The three panels show the estimates for

food, healthcare, and real estate logos from top to bottom. We position the two versions of

the same logos next to each other on the y-axis. From the figure, it is clear that, although for

some pairs there is minor discrepancy between the logo effects of the two versions, distortions
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do impact the perceived industry relevancy overall. The directions of the impact are as

expected: for food and real estate logos, distorted versions tend to be rated higher; for

healthcare logos, distorted versions are rated lower. The distortions serve as additional noise

to the original version, thus pulling the perception of the original logos towards the average.

We then formally quantify the discrepancy brought in by distortions for healthcare logos.

To do so, we apply a contrast between the effects of the two versions and get an estimate of

-0.474 (SE = 0.103, 50% CI = [-0.543, -0.405], 95% CI = [-0.676, -0.272], 99% CI = [-0.739,

-0.209]). To benchmark the discrepancy, we apply a contrast between the effects of original

logos of the healthcare industry and the effects of original logos not of the industry. The

estimate is 3.644 (SE = 0.118, 50% CI = [3.564, 3.724], 95% CI = [3.413, 3.875], 99% CI =

[3.340, 3.948]). This shows that while distortion negatively impacts the perception, it does

not make the original style completely indecipherable. Based on these findings, we think

that, although distortions in machine-generated logos challenge their usefulness, some style

information of the original logo can still be communicated through AI variations.

Figure E.5: Survey Question in Industry-Relevancy Survey
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Figure E.6: Survey Question in Click Attractiveness Survey

Figure E.7: Survey Question in Original Logo Resemblance Survey
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F Additional Results of Experiment

F.1 Supplemental Details in Experiment

Figure F.1: Brief

The brief of the blind condition is in Figure F.1. The brief of the open condition has

this additional paragraph at the end: Suggestions: To inspire you and guide your designs,

we provide ratings on logos that we previously collected in the gallery below. These ratings

show how well logos attract clicks. The logos in the gallery are illustrative examples that do

not participate in the current contest.

The brief of the variation condition has this additional paragraph at the end: Suggestions:

To inspire you and guide your designs, we provide ratings on logos that we previously collected

in the gallery below. These ratings show how well logos attract clicks. We do not show original

designs. Instead, we show variations that resemble them.

F.2 Participation

Table F.1 presents the summary statistics of designer-level variables of participating design-

ers. Table F.2 presents the summary statistics of designer-level variables across the three

conditions. We show participation patterns across the three conditions in Figure F.2, F.3,

F.4, F.5. Additionally, we conducted t-test across conditions, and again, there is no sub-

stantial difference in any of these variables across conditions.
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Table F.1: Designer Variables

Variable Description Mean Median Std

OverallReputation Avg. system-generated past performance rating (0–5) 4.09 4.94 1.82

Professionalism Avg. client rating of professional conduct (0–5) 4.07 4.94 1.83

HireAgain Avg. client rating of rehire likelihood (0–5) 4.10 4.96 1.83

Quality Avg. client rating of project quality (0–5) 4.07 4.95 1.83

NumJobs Total number of completed projects 20.15 18.50 30.72

Reviews Total number of client reviews received 19.50 18.00 29.86

HourlyRate Designer-reported hourly rate 22.56 15.00 25.35

Notes: The platform provides two design services. One is design contest, and the other is design projects,
where clients approach to individual designers for a task. Professionalism, HireAgain, and Quality are from
client reviews when design projects are completed. OverallReputation is a weighted score provided by the
platform. Notice that NumJobs do not include design contests, but refer to the number of design projects
ever participated.

Table F.2: Designer-Level Summary Statistics across Conditions

Open Variation Blind

OverallReputation 4.12 (1.77) 4.09 (1.86) 4.05 (1.82)

Quality 4.13 (1.77) 4.10 (1.87) 4.04 (1.83)

Professionalism 4.13 (1.77) 4.09 (1.86) 4.07 (1.83)

HireAgain 4.11 (1.76) 4.10 (1.87) 4.03 (1.83)

NumJobs 22.05 (34.92) 20.16 (32.06) 18.58 (25.12)

Reviews 21.45 (34.16) 19.53 (31.23) 17.86 (24.07)

HourlyRate 21.02 (22.10) 24.31 (33.00) 22.43 (19.92)

Notes: All differences are not significant. Standard deviations are in parentheses.
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Figure F.2: Number of Submissions
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Figure F.3: Continuous Participation
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Figure F.4: Entry Time
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Figure F.5: Number of Brief Visits

The open and variation condition have substantially more brief webpage visits than the blind condition.
This makes sense for the brief of blind condition contains only brand information. To learn from exemplars,
designers in the Open and variation conditions pay more visits.
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F.3 Analysis on Quality and Originality

From the designer-level, AI intermediation boosts performances compared to the blind con-

dition. The left plot of the Figure F.6 shows the distribution of designer-level average click

attractiveness of their submissions. From the comparisons between the Variation and blind

conditions, we can see a clear shift to the right of the distributions. We then conduct t-

test to confirm our observation (µvariation = 0.51, SDvariation = 0.12, µblind = 0.44, SDblind =

0.14, tvariation,blind = 3.155, pvariation,blind = 0.002). We also compare the performances be-

tween Variation and open conditions ( µopen = 0.50, SDopen = 0.14, topen,variation = −0.224,

popen,variation = 0.823). This shows that the designer-level performances of variation con-

dition is substantially better than blind condition, and is comparable to open condition,

and suggests that variations can communicate key ideas of leading logos, thus boosting the

performance of subsequent submissions.

Table F.3 shows the quality regression results under different specifications and Table

F.6 shows the contrasts between group factors on quality.

Table F.4 shows embedding-based results under different specification of ‘high-quality’

submissions and Table F.5 shows perceived originality of the three dimensions: color palette,

style, and composition. Tables F.4 and F.8 show the corresponding contrasts between con-

ditions.
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Table F.3: Mean and Quantile Regression Results for Click Attractiveness

Mean τ = 0.95 τ = 0.90 τ = 0.75 τ = 0.50

Open
0.4981∗∗∗

(0.046)

0.7313∗∗∗

(0.034)

0.7042∗∗∗

(0.031)

0.6255∗∗∗

(0.030)

0.5358∗∗∗

(0.030)

Variation
0.4811∗∗∗

(0.045)

0.7597∗∗∗

(0.036)

0.7049∗∗∗

(0.034)

0.6010∗∗∗

(0.031)

0.5036∗∗∗

(0.030)

Blind
0.4282∗∗∗

(0.041)

0.6946∗∗∗

(0.036)

0.6503∗∗∗

(0.033)

0.5629∗∗∗

(0.030)

0.4616∗∗∗

(0.030)

SubmissionTime
0.0061

(0.003)

0.0066

(0.004)

0.0075∗

(0.003)

0.0078∗

(0.003)

0.0060

(0.003)

OverallReputation
0.2297∗

(0.112)

0.4289∗∗

(0.143)

0.2941∗∗

(0.111)

0.3540∗∗

(0.108)

0.2633∗

(0.109)

Quality
-0.0023

(0.091)

-0.1085

(0.117)

-0.0780

(0.100)

-0.0517

(0.089)

0.0060

(0.082)

HireAgain
-0.1772∗

(0.077)

-0.1724

(0.089)

-0.1523

(0.099)

-0.1916∗

(0.076)

-0.2151∗∗

(0.071)

Professionalism
0.0157

(0.077)

-0.1631∗

(0.064)

-0.0507

(0.078)

-0.0467

(0.082)

0.0179

(0.094)

NumJobs
-0.0024

(0.005)

-0.0123

(0.007)

-0.0122

(0.007)

-0.0078

(0.005)

-0.0054

(0.005)

Reviews
0.0027

(0.005)

0.0125

(0.007)

0.0123

(0.007)

0.0078

(0.005)

0.0055

(0.006)

HourlyRate
0.0005

(0.000)

0.0003

(0.000)

0.0004

(0.000)

0.0006

(0.000)

0.0009∗

(0.000)

(Pseudo) R-squared 0.052 0.0465 0.0408 0.0344 0.0285

Observations 1027 1027 1027 1027 1027

Notes: Standard errors in parentheses. Significance levels: ∗p < 0.05, ∗∗p < 0.01,
∗∗∗p < 0.001.
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Table F.4: Mean Regression of Different ‘High-Quality’ Definition for Embedding-
based Originality

Top 50 Each

Condition

Top 100 Each

Condition

Top 150 in

All Submissions

Top 300 in

All Submissions

Open
0.0988∗∗∗

(0.027)

0.0761∗∗∗

(0.017)

0.0830∗∗∗

(0.025)

0.0768∗∗∗

(0.017)

Variation
0.1253∗∗∗

(0.026)

0.0985∗∗∗

(0.017)

0.1181∗∗∗

(0.024)

0.0984∗∗∗

(0.017)

Blind
0.1329∗∗∗

(0.030)

0.0961∗∗∗

(0.019)

0.1147∗∗∗

(0.029)

0.0970∗∗∗

(0.020)

SubmissionTime
-0.0039

(0.002)

0.0000

(0.002)

-0.0029

(0.002)

-0.0003

(0.002)

OverallReputation
0.0347

(0.116)

0.1177∗

(0.054)

0.0410

(0.111)

0.0887

(0.063)

Quality
0.0585

(0.066)

0.0721

(0.056)

0.1064∗∗

(0.034)

0.0365

(0.052)

Professionalism
0.0212

(0.148)

-0.0499

(0.068)

-0.0870

(0.103)

-0.0093

(0.079)

HireAgain
-0.0927∗

(0.039)

-0.1003∗∗∗

(0.030)

-0.0874∗

(0.042)

-0.1019∗∗∗

(0.027)

NumJobs
-0.0025

(0.004)

-0.0033

(0.003)

-0.0012

(0.003)

-0.0017

(0.004)

Reviews
0.0024

(0.004)

0.0034

(0.003)

0.0014

(0.003)

0.0017

(0.004)

HourlyRate
-0.0002∗

(0.000)

0.0001

(0.000)

-0.0002

(0.000)

0.0001

(0.000)

R-squared 0.136 0.074 0.212 0.059

Observations (open) 50 100 65 117

Observations (variation) 50 100 57 108

Observations (blind) 50 100 28 75

Notes: Standard errors in parentheses. Significance levels: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
Submissions are ranked by their click attractiveness.
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Table F.5: Mean Regression of Perception-based Originality

Color Composition Style Overall

Open
2.0294∗

(0.857)

1.9944∗∗

(0.670)

2.1511∗∗

(0.741)

2.0583∗∗

(0.748)

Variation
2.4204∗∗

(0.841)

2.6705∗∗∗

(0.662)

2.7904∗∗∗

(0.734)

2.6271∗∗

(0.737)

Blind
2.5554∗∗

(0.896)

2.7288∗∗∗

(0.726)

2.9162∗∗∗

(0.800)

2.7335∗∗∗

(0.800)

SubmissionTime
-0.0474

(0.045)

-0.0837

(0.062)

-0.0909

(0.063)

-0.0740

(0.055)

OverallReputation
0.1951

(1.850)

1.1890

(2.437)

0.0575

(2.221)

0.4805

(2.044)

Quality
2.1976

(1.173)

1.2914

(1.783)

1.3324

(1.700)

1.6071

(1.536)

Professionalism
-1.4203

(2.810)

-0.9169

(3.792)

0.3052

(3.676)

-0.6773

(3..378)

HireAgain
-0.8663

(0.714)

-1.1480

(0.902)

-1.0558

(0.842)

-1.0234

(0.758)

NumJobs
-0.0626

(0.052)

-0.1097

(0.080)

-0.0785

(0.080)

-0.0836

(0.069)

Reviews
0.0632

(0.053)

0.1122

(0.083)

0.0788

(0.082)

0.0847

(0.072)

HourlyRate
-0.0026

(0.002)

-0.0032

(0.003)

-0.0044

(0.002)

-0.0034

(0.002)

R-squared 0.112 0.092 0.105 0.103

Observations 150 150 150 150

Notes: Standard errors in parentheses. Significance levels: ∗p < 0.05,
∗∗p < 0.01, ∗∗∗p < 0.001. For each dimension, the originality is calcu-
lated as 7 - similarity.
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Figure F.6: Distributions of Click Attractiveness across Groups

Table F.6: Contrasts of Group Factors on Click Attractiveness Across Selected Quantiles

τ βopen − βvar βvar − βblind βopen − βblind

0.95 -0.028 (0.018) 0.065*** (0.017) 0.037** (0.019)

0.90 -0.001 (0.018) 0.055*** (0.017) 0.054** (0.018)

0.75 0.025 (0.016) 0.038** (0.016) 0.063*** (0.017)

0.50 0.032 (0.017) 0.042** (0.017) 0.074*** (0.017)

Notes: Standard errors in parentheses. Significance levels: ∗p <
0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
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Table F.7: Contrasts of Group Factors on Embedding-based Originality Across Different
‘High-Quality’ Definitions

βopen − βvar βvar − βblind βopen − βblind

Top 50 Each Condition -0.0265* (0.0104) -0.0075 (0.0134) -0.0341** (0.0122)

Top 100 Each Condition -0.0225** (0.0085) 0.0024 (0.0103) -0.0201* (0.0099)

Top 150 in All Submissions -0.0351*** (0.0091) 0.0034 (0.0142) -0.0317* (0.0129)

Top 300 in All Submissions -0.0216* (0.0089) 0.0014 (0.0107) -0.0202* (0.0103)

Notes: Standard errors in parentheses. Significance levels: ∗p <
0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

Table F.8: Contrasts of Group Factors on Perception-based Originality

βopen − βvar βvar − βblind βopen − βblind

Color -0.3911 (0.2201) -0.1349 (0.3012) -0.5260* (0.2240)

Composition -0.6761* (0.2652) -0.0583 (0.3613) -0.7344* (0.3139)

Style -0.6393* (0.2558) -0.1259 (0.3626) -0.7651* (0.3080)

Overall -0.5688* (0.2355) -0.1064 (0.3322) -0.6752* (0.2725)

Notes: Standard errors in parentheses. Significance levels: ∗p <
0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
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F.4 Supplements to Contribution Study

Figure F.7: Embedding-based Originality of Refined Variation v.s. AI variation
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